organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Hydrogen-bonding patterns in 4-[(5-methylisoxazol-3-yl)aminosulfonyl]anilinium chloride

Annamalai Subashini,^a Packianathan Thomas Muthiah,^a* Gabriele Bocelli^b and Andrea Cantoni^b

^aSchool of Chemistry, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India, and ^bIMEM-CNR, Parco Area delle Scienze 37a, I-43010 Fontanini-Parma, Italy

Correspondence e-mail: tommtrichy@yahoo.co.in

Received 8 October 2007; accepted 9 October 2007

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.005 Å; R factor = 0.037; wR factor = 0.071; data-to-parameter ratio = 12.1.

In the title compound, $C_{10}H_{12}O_3N_3S^+ \cdot Cl^-$, 4-amino-N-(5methyl-3-isoxazolyl)benzenesulfonamide is protonated on the amine N atom which is connected to the benzene ring. The geometry around the S atom is considerably distorted from ideal tetrahedral geometry. The crystal packing is stabilized by intermolecular N-H···N, N-H···Cl, N-H···O and C- $H \cdots O$ hydrogen bonds.

Related literature

For related literature, see: Abramenko & Sergienko (2002); Bettinetti et al. (1982); Chatterjee et al. (1982); Ghosh et al. (1991); Haridas et al. (1984); Johnson (1976); Kálmán et al. (1981); Kendi et al. (2000); Özbey et al. (2005); Singh et al. (1984); Takasuka & Nakai (2001).

Experimental

Crystal data $C_{10}H_{12}N_3O_3S^+ \cdot Cl^-$

 $M_{\rm w} = 289.75$ Monoclinic, Cc a = 8.677 (2) Å b = 15.615 (3) Å c = 10.435 (2) Å $\beta = 111.29 \ (2)^{\circ}$

V = 1317.4 (5) Å³ Z = 4Mo $K\alpha$ radiation $\mu = 0.45 \text{ mm}^-$ T = 293 K $0.15 \times 0.14 \times 0.13 \text{ mm}$

Data collection

Philips PW 1100 diffractometer	1318 reflections with $I > 2\sigma(I)$
Absorption correction: none	1 standard reflection
2021 measured reflections	every 100 reflections
2021 independent reflections	intensity decay: none

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.037$	H-atom parameters constrained
$wR(F^2) = 0.071$	$\Delta \rho_{\rm max} = 0.19 \ {\rm e} \ {\rm \AA}^{-3}$
S = 0.90	$\Delta \rho_{\rm min} = -0.21 \text{ e } \text{\AA}^{-3}$
2021 reflections	Absolute structure: Flack (1983),
167 parameters	89 Friedel pairs
2 restraints	Flack parameter: -0.05 (7)

Table 1

Selected geometric parameters (Å, °).

S1-O1	1.429 (2)	\$1-N7	1.631 (3)
S1-O2	1.433 (2)	S1-C1	1.775 (3)
O1-S1-O2	120.92 (17)	N7-S1-C1	106.01 (15)
O1-S1-N7	104.98 (16)	S1-N7-C8	124.0 (2)
O1-S1-C1	108.03 (15)	S1-C1-C2	120.3 (3)
O2-S1-N7	107.48 (15)	S1-C1-C6	119.4 (2)
O2-S1-C1	108.47 (16)		

Table 2 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N4-H4A\cdots N8^{i}$	0.92	1.93	2.843 (4)	170
$N4 - H4B \cdot \cdot \cdot Cl1^{ii}$	0.98	2.20	3.177 (3)	175
N4−H4C···Cl1 ⁱⁱⁱ	0.86	2.24	3.093 (3)	169
$N7 - H7 \cdot \cdot \cdot Cl1$	0.86	2.55	3.094 (3)	122
$N7 - H7 \cdots O3^{iv}$	0.86	2.56	3.204 (4)	133
$C2 - H2 \cdot \cdot \cdot O1$	0.93	2.55	2.926 (5)	105
$C6-H6\cdots O1^{v}$	0.93	2.53	3.389 (4)	154

Symmetry codes: (i) $x - \frac{1}{2}, y + \frac{1}{2}, z$; (ii) $x - 1, -y + 1, z - \frac{1}{2}$; (iii) x - 1, y, z; (iv) $x + \frac{1}{2}, -y + \frac{1}{2}, z + \frac{1}{2}$; (v) $x - \frac{1}{2}, -y + \frac{1}{2}, z - \frac{1}{2}$.

Data collection: FEBO (Belletti, 1996); cell refinement: MolEN (Fair, 1990); data reduction: MolEN; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: PLATON.

AS thanks Bharathidasan University, Tiruchirappalli, Tamil Nadu, India, for the award of a Research Student Fellowship (Ref: CCCD/ PhD-2/15504/2004).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2536).

References

Abramenko, V. L. & Sergienko, V. S. (2002). Russ. J. Inorg. Chem. 47, 905-914. Belletti, D. (1996). FEBO. Internal Report 1-96. Centro di Studio per la Strutturistica Diffrattometrica del CNR, Parma, Italy.

Bettinetti, G. P., Giordano, F., La Manna, A., Giuseppetti, G. & Tadini, C. (1982). Cryst. Struct. Commun. 11, 821-828.

Chatterjee, C., Dattagupta, J. K. & Saha, N. N. (1982). Acta Cryst. B38, 1845-1847.

Fair, C. K. (1990). MolEN. Enraf-Nonius, Delft, The Netherlands.

Flack, H. D. (1983). Acta Cryst. A39, 876-881.

- Ghosh, M., Basak, A. K., Mazumdar, S. K. & Sheldrick, B. (1991). Acta Cryst. C47, 577-580.
- Haridas, M., Tiwari, R. K. & Singh, T. P. (1984). *Acta Cryst.* C40, 658–660. Johnson, C. K. (1976). *ORTEPII*. Report ORNL-5138. Oak Ridge National
- Laboratory, Tennessee, USA.
- Kálmán, A., Czugler, M. & Argay, Gy. (1981). Acta Cryst. B37, 868-877.

Kendi, E., Özbey, S., Bozdoğ, O. & Ertan, R. (2000). Acta Cryst. C56, 457-458. Özbey, S., Akbaş, A., Ayhan-Kilcigil, G. & Ertan, R. (2005). Acta Cryst. C61, 0559-0561.

Sheldrick, G. M. (1997). *SHELXL97*. University of Göttingen, Germany. Singh, T. P., Patel, U. & Haridas, M. (1984). *Acta Cryst.* C40, 2088–2091. Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

Takasuka, M. & Nakai, H. (2001). Vib. Spectrosc. 25, 197–204.

Acta Cryst. (2007). E63, o4312-o4313 [doi:10.1107/S1600536807049446]

Hydrogen-bonding patterns in 4-[(5-methylisoxazol-3-yl)aminosulfonyl]anilinium chloride

A. Subashini, P. T. Muthiah, G. Bocelli and A. Cantoni

Comment

Sulfonamides constitute an important class of antimicrobical agents. The drug, 4-amino-*N*-(5-methyl-3-isoxzolyl) benzene sulfonamide [Sulfamethoxazole (SMZ)] prevents the formation of dihydrofolic acid, a compound that bacteria must be able to make in order to survive. The two polymorphs of SMZ (Bettinetti *et al.*, 1982) have already been reported in literature.

An ORTEPH (Johnson, 1976) view of the title compound (I), is shown in Fig.1. The asymmetric unit contains one 4-ammonio-N-(5-methyl-3-isoxazolyl) benzene sulfonamide cation and a chloride anion. The cation is protonated on the amine nitrogen (N4) atom. The distances around the S atom in the SMZ molecule agree well with the corresponding distances in other sulfonamides. The atoms around the sulfonamide S atom in (I) are arranged in a slightly distorted tetrahedral configuration. The largest deviation is in the angle O1-S1-O2 [120.92 (17)°], but it confirms to the non-tetrahedral nature commonly observed in sulfonamides (Chatterjee et al., 1982; Haridas et al., 1984; Ghosh et al., 1991; Kendi et al., 2000; Takasuka & Nakai, 2001; Özbey et al., 2005). The S1-C1 distance of 1.775 (3)Å (I) is a normal single-bond value and matches well with those observed in other sulfonamides (Singh et al., 1984; Abramenko & Sergienko, 2002). In the present structure the dihedral angle between the isoxazole and ammonio phenyl plane is found to be 58.0 (2)°, whereas in neutral SMZ structures the dihedral angles are 73.15° for form 1 and 79.66° for form 2 (Bettinetti et al., 1982) respectively. The two torsion angles τ_1 (C—C—S—N) and τ_2 (C—S—N—C) defining the conformation of the sulfonamide group are reported to lie in the range 70–120° and 60–90°, respectively (Kálmán *et al.*, 1981). The torsion angles τ_1 is 73.2 (3)° (C6–C1–S1–N7) and τ_2 is -71.2 (3) Å (C1–S1–N7–C8). In the neutral forms, the torsion angles τ_1 are -76.59° (Form 1) and -78.55° (Form 2). The torsion angles τ_2 are -56.14° in form 1 and -61.58° in form 2. The cations and chloride anions are involved in a network of intermolecular hydrogen bonds, resulting in the formation of infinite chains propagating in the-b direction (Fig. 2). The chloride anion participates in N-H···Cl hydrogen-bond formation as a three proton acceptor, interacting with both the ammonio and amide NH groups [N-Cl = 3.093 (3)-3.177 (3) Å]. The amide N-H group also acts as a donor to the oxygen atom of isoxazole moiety, with an N-O distance of 3.204 (4) Å. The sulforyl O atom (O1) is involved in a weak interaction with C6 of the phenyl ring through C-H···O hydrogen bonds (Fig 3).

Experimental

2 ml of HCl (20%) was added slowly to a solution of 4-amino-*N*-(5-methyl-3-isoxazolyl) benzene sulfonamide in hot ethanol. After a few days, colourless crystals of the title compound (I), were appeared.

Refinement

All H atoms were placed in idealized locations and were refined using a riding model, with C—H = 0.93 Å, N—H = 0.86–0.92 Å and $U_{iso}(H) = 1.2Ueq$ (C,N).

Figures

Fig. 1. An *ORTEP* view of the asymmetric unit of (I) showing 50% probability displacement ellipsoids.

Fig. 2. Hydrogen bonding patterns in compound (I). Symmetry codes: (i) x - 1/2,y + 1/2,z; (ii) x - 1,-y + 1,z - 1/2; (iii) x - 1,y,z.

Fig. 3. A view of C—H···O interaction in compound (I). Symmetry codes: (v) $x - \frac{1}{2}, -y + \frac{1}{2}, z - \frac{1}{2}$.

4-[(5-methylisoxazol-3-yl)aminosulfonyl]anilinium chloride

Crystal data

$C_{10}H_{12}N_3O_3S^+ \cdot Cl^-$	$F_{000} = 600$
$M_r = 289.75$	$D_{\rm x} = 1.461 {\rm ~Mg~m}^{-3}$
Monoclinic, Cc	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: C -2yc	Cell parameters from 25 reflections
a = 8.677 (2) Å	$\theta = 3.0 - 30.0^{\circ}$
b = 15.615 (3) Å	$\mu = 0.45 \text{ mm}^{-1}$
c = 10.435 (2) Å	T = 293 K
$\beta = 111.29 \ (2)^{\circ}$	Prism, colourless
$V = 1317.4 (5) \text{ Å}^3$	$0.15\times0.14\times0.13~mm$
Z = 4	

Data collection

Philips PW 1100 diffractometer	$R_{\rm int} = 0.0000$
Radiation source: fine-focus sealed tube	$\theta_{\text{max}} = 30.0^{\circ}$
Monochromator: graphite	$\theta_{\min} = 3.4^{\circ}$
T = 293 K	$h = -12 \rightarrow 11$
ω scans	$k = 0 \rightarrow 21$
Absorption correction: none	$l = 0 \rightarrow 14$
2021 measured reflections	1 standard reflections

2021 independent reflections	every 100 reflections
1318 reflections with $I > 2\sigma(I)$	intensity decay: none

Re	finement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.037$	$w = 1/[\sigma^2(F_o^2) + (0.0282P)^2],$ where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.071$	$(\Delta/\sigma)_{max} < 0.001$
S = 0.90	$\Delta \rho_{max} = 0.19 \text{ e } \text{\AA}^{-3}$
2021 reflections	$\Delta \rho_{\rm min} = -0.21 \text{ e } \text{\AA}^{-3}$
167 parameters	Extinction correction: ?
2 restraints	Absolute structure: Flack (1983), 89 Friedel pairs
Primary atom site location: structure-invariant direct methods	Flack parameter: -0.05 (7)

Secondary atom site location: difference Fourier map

Special details

Geometry. Bond distances, angles *etc*. have been calculated using the rounded fractional coordinates. All e.s.d.'s are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F^2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted *R*-factors *wR* and all goodnesses of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The observed criterion of $F^2 > 2$ sigma(F^2) is used only for calculating -R-factor-obs *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Z	$U_{\rm iso}*/U_{\rm eq}$
S1	0.33023 (10)	0.30198 (5)	1.02704 (8)	0.0452 (3)
01	0.4305 (3)	0.32910 (17)	1.1625 (2)	0.0622 (10)
O2	0.2677 (3)	0.21625 (14)	1.0016 (3)	0.0592 (10)
O3	0.3264 (3)	0.21386 (15)	0.6159 (3)	0.0564 (10)
N4	-0.2378 (3)	0.54615 (16)	0.8049 (3)	0.0418 (10)
N7	0.4442 (3)	0.31761 (16)	0.9346 (3)	0.0436 (9)
N8	0.3621 (4)	0.21322 (17)	0.7594 (3)	0.0525 (11)
C1	0.1613 (4)	0.3740 (2)	0.9626 (3)	0.0384 (10)
C2	0.1549 (5)	0.4471 (2)	1.0364 (4)	0.0501 (11)
C3	0.0266 (5)	0.5039 (2)	0.9840 (4)	0.0514 (14)
C4	-0.0967 (4)	0.48678 (19)	0.8594 (3)	0.0370 (10)
C5	-0.0929 (4)	0.4144 (2)	0.7853 (3)	0.0438 (11)
C6	0.0384 (4)	0.3578 (2)	0.8374 (3)	0.0443 (11)
C8	0.3984 (4)	0.29307 (19)	0.7974 (3)	0.0351 (10)

C9	0.3927 (4)	0.3457 (2)	0.6865 (4)	0.0451 (11)
C10	0.3460 (4)	0.2944 (2)	0.5764 (4)	0.0459 (12)
C11	0.3117 (5)	0.3066 (3)	0.4289 (4)	0.0645 (16)
Cl1	0.56666 (11)	0.50480 (6)	0.99302 (10)	0.0488 (3)
H2	0.23760	0.45760	1.12130	0.0600*
H3	0.02290	0.55350	1.03210	0.0620*
H4A	-0.19790	0.60040	0.80070	0.067 (12)*
H4B	-0.30140	0.53420	0.70750	0.054 (10)*
H4C	-0.29630	0.54180	0.85610	0.045 (10)*
Н5	-0.17730	0.40360	0.70150	0.0520*
H6	0.04350	0.30910	0.78780	0.0530*
H7	0.53820	0.34250	0.97280	0.0520*
H9	0.41650	0.40390	0.68910	0.0540*
H11A	0.22950	0.35040	0.39360	0.0970*
H11B	0.27180	0.25390	0.38090	0.0970*
H11C	0.41150	0.32340	0.41590	0.0970*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.0562 (5)	0.0374 (4)	0.0361 (4)	-0.0009 (4)	0.0098 (4)	0.0115 (4)
01	0.0727 (19)	0.0673 (17)	0.0342 (14)	0.0047 (14)	0.0045 (13	0.0126 (12)
O2	0.0734 (19)	0.0353 (13)	0.0663 (18)	-0.0031 (12)	0.0223 (16	b) 0.0181 (12)
O3	0.0714 (19)	0.0473 (15)	0.0525 (16)	-0.0147 (13)	0.0248 (15	b) -0.0153 (12)
N4	0.0492 (17)	0.0319 (15)	0.0492 (18)	-0.0021 (13)	0.0236 (15	b) -0.0003 (13)
N7	0.0384 (15)	0.0434 (15)	0.0400 (16)	-0.0101 (12)	0.0036 (12	2) 0.0025 (13)
N8	0.070 (2)	0.0338 (15)	0.054 (2)	-0.0064 (14)	0.0228 (17	<i>-</i> 0.0027 (13)
C1	0.0472 (19)	0.0312 (16)	0.0365 (17)	-0.0034 (14)	0.0150 (15	6) 0.0033 (14)
C2	0.054 (2)	0.047 (2)	0.0397 (19)	-0.0065 (18)	0.0054 (17	<i>-</i> 0.0115 (17)
C3	0.061 (3)	0.0392 (19)	0.052 (2)	-0.0047 (19)	0.018 (2)	-0.0172 (18)
C4	0.0479 (19)	0.0289 (16)	0.0368 (17)	-0.0075 (14)	0.0185 (15	-0.0002(13)
C5	0.051 (2)	0.0370 (18)	0.0382 (18)	-0.0006 (16)	0.0101 (16	b) -0.0074 (15)
C6	0.058 (2)	0.0350 (18)	0.0340 (19)	0.0021 (17)	0.0098 (17	<i>-</i> 0.0061 (15)
C8	0.0299 (16)	0.0297 (16)	0.0416 (18)	-0.0035 (14)	0.0082 (14	-0.0004 (14)
C9	0.052 (2)	0.0323 (18)	0.051 (2)	-0.0081 (15)	0.0187 (18	6) 0.0008 (16)
C10	0.042 (2)	0.044 (2)	0.056 (2)	-0.0075 (17)	0.023 (2)	-0.0054 (17)
C11	0.072 (3)	0.076 (3)	0.049 (2)	-0.018 (2)	0.026 (2)	-0.006 (2)
C11	0.0622 (5)	0.0392 (5)	0.0495 (5)	-0.0109 (4)	0.0257 (4)	-0.0048 (4)
Geometric param	neters (Å, °)					
S1—O1		1.429 (2)	C2-	—C3		1.372 (6)
S1—O2		1.433 (2)	C3-	—C4		1.377 (5)
S1—N7		1.631 (3)	C4	—C5		1.377 (4)
S1—C1		1.775 (3)	C5-	—C6		1.387 (5)
O3—N8		1.415 (4)	C8-	—С9		1.406 (5)
O3—C10		1.353 (4)	C9-	C10		1.337 (5)
N4—C4		1.475 (4)	C1	0—C11		1.470 (6)
N7—C8		1.393 (4)	C2-	—H2		0.9301

N8—C8	1.312 (4)	С3—Н3	0.9298
N4—H4B	0.9824	С5—Н5	0.9297
N4—H4C	0.8629	С6—Н6	0.9299
N4—H4A	0.9222	С9—Н9	0.9302
N7—H7	0.8597	C11—H11A	0.9599
C1—C2	1.389 (5)	C11—H11B	0.9602
C1—C6	1.377 (4)	CII—HIIC	0.9604
Cl1…N4 ⁱ	3.093 (3)	C5…Cl1 ^{ix}	3.616 (3)
Cl1…N7	3.094 (3)	C6···C11 ^{xi}	3.569 (6)
Cl1···C5 ⁱⁱ	3.616 (3)	C6…C8	3.450 (5)
Cl1···C11 ⁱⁱⁱ	3.597 (5)	C6…O1 ^{vi}	3.389 (4)
Cl1…N4 ⁱⁱ	3.177 (3)	C8…C6	3.450 (5)
Cl1…H4C ⁱ	2.2412	C11···O1 ^{xii}	3.316 (5)
Cl1···H7	2.5476	C11····C6 ^{xiii}	3.569 (6)
Cl1···H11C ⁱⁱⁱ	2.9783	C11····Cl1 ^{xiv}	3.597 (5)
Cl1···H9 ⁱⁱⁱ	3.1389	C6…H11B ^{xi}	3.0598
Cl1···H5 ⁱⁱ	2.8644	С8…Н6	3.0548
Cl1…H4B ⁱⁱ	2.1977	H2…O1	2.5475
S1…H6 ^{iv}	3.1907	НЗ…Н4А	2.5842
O1···C11 ^v	3.316 (5)	H4A····O2 ^x	2.8655
O1···C6 ^{iv}	3.389 (4)	H4A···O3 ^x	2.6828
O2…N8	2.926 (4)	H4A…N8 ^x	1.9296
O3…N7 ^{vi}	3.204 (4)	Н4А…Н3	2.5842
O1…H11C ^v	2.7099	H4B…H5	2.3176
O1…H2	2.5475	H4B…Cl1 ^{ix}	2.1977
O1…H6 ^{iv}	2.5292	H4C…Cl1 ^{viii}	2.2412
O2…H5 ^{iv}	2.7126	H5…Cl1 ^{ix}	2.8644
O2…H4A ^{vii}	2.8655	H5…H4B	2.3176
O2…H6	2.7771	H5····O2 ^{vi}	2.7126
O3…H4A ^{vii}	2.6828	Н6…О2	2.7771
O3…H7 ^{vi}	2.5585	H6…C8	3.0548
N4…Cl1 ^{viii}	3.093 (3)	H6…S1 ^{vi}	3.1907
N4…Cl1 ^{ix}	3.177 (3)	H6…O1 ^{vi}	2.5292
N4…N8 ^x	2.843 (4)	H7···O3 ^{iv}	2.5586
N7···O3 ^{iv}	3.204 (4)	H7…Cl1	2.5476
N7…Cl1	3.094 (3)	H9····Cl1 ^{xiv}	3.1389
N8…N4 ^{vii}	2.843 (4)	H11B····C6 ^{xiii}	3.0598
N8…O2	2.926 (4)	H11C…O1 ^{xii}	2.7099
N8…H4A ^{vii}	1.9296	H11C…Cl1 ^{xiv}	2.9783
01—\$1—02	120.92 (17)	C4—C5—C6	119.1 (3)
O1—S1—N7	104.98 (16)	C1—C6—C5	119.8 (3)
O1—S1—C1	108.03 (15)	N7—C8—C9	126.6 (3)

O2—S1—N7	107.48 (15)	N8—C8—C9	112.0 (3)
O2—S1—C1	108.47 (16)	N7—C8—N8	121.3 (3)
N7—S1—C1	106.01 (15)	C8—C9—C10	105.4 (3)
N8—O3—C10	109.0 (3)	O3—C10—C11	116.1 (3)
S1—N7—C8	124.0 (2)	C9—C10—C11	134.8 (3)
O3—N8—C8	104.4 (2)	O3—C10—C9	109.1 (3)
H4B—N4—H4C	112.95	С1—С2—Н2	120.04
C4—N4—H4C	107.71	С3—С2—Н2	119.96
C4—N4—H4A	108.80	С2—С3—Н3	120.35
C4—N4—H4B	110.81	С4—С3—Н3	120.27
H4A—N4—H4B	101.82	С4—С5—Н5	120.39
H4A—N4—H4C	114.65	С6—С5—Н5	120.49
S1—N7—H7	118.05	С1—С6—Н6	120.09
C8—N7—H7	117.99	С5—С6—Н6	120.07
S1—C1—C2	120.3 (3)	С8—С9—Н9	127.31
S1—C1—C6	119.4 (2)	С10—С9—Н9	127.24
C2—C1—C6	120.3 (3)	C10-C11-H11A	109.50
C1—C2—C3	120.0 (4)	C10-C11-H11B	109.43
C2—C3—C4	119.4 (3)	C10-C11-H11C	109.46
N4—C4—C3	119.6 (3)	H11A—C11—H11B	109.48
N4—C4—C5	119.0 (3)	H11A—C11—H11C	109.49
C3—C4—C5	121.4 (3)	H11B—C11—H11C	109.46
O1—S1—N7—C8	174.6 (3)	O3—N8—C8—C9	-1.6 (4)
O2—S1—N7—C8	44.7 (3)	S1—C1—C6—C5	-179.1 (3)
C1—S1—N7—C8	-71.2 (3)	S1—C1—C2—C3	178.0 (3)
O1—S1—C1—C2	6.7 (3)	C6—C1—C2—C3	-0.6 (6)
O1—S1—C1—C6	-174.7 (3)	C2—C1—C6—C5	-0.5 (5)
O2—S1—C1—C2	139.4 (3)	C1—C2—C3—C4	1.3 (6)
O2—S1—C1—C6	-42.0 (3)	C2—C3—C4—N4	177.9 (3)
N7—S1—C1—C2	-105.4 (3)	C2—C3—C4—C5	-0.9 (6)
N7—S1—C1—C6	73.2 (3)	C3—C4—C5—C6	-0.2 (5)
N8—O3—C10—C11	-179.3 (3)	N4—C4—C5—C6	-179.0 (3)
C10—O3—N8—C8	0.9 (4)	C4—C5—C6—C1	0.9 (5)
N8—O3—C10—C9	0.1 (4)	N8—C8—C9—C10	1.8 (5)
S1—N7—C8—N8	-57.2 (4)	N7—C8—C9—C10	178.6 (4)
S1—N7—C8—C9	126.2 (3)	C8—C9—C10—O3	-1.1 (4)
O3—N8—C8—N7	-178.7 (3)	C8—C9—C10—C11	178.3 (4)

Symmetry codes: (i) *x*+1, *y*, *z*; (ii) *x*+1, *-y*+1, *z*+1/2; (iii) *x*, *-y*+1, *z*+1/2; (iv) *x*+1/2, *-y*+1/2, *z*+1/2; (v) *x*, *y*, *z*+1; (vi) *x*-1/2, *-y*+1/2, *z*-1/2; (vii) *x*+1/2, *y*-1/2, *z*; (viii) *x*-1, *y*, *z*; (ix) *x*-1, *-y*+1, *z*-1/2; (x) *x*-1/2, *y*+1/2, *z*; (xi) *x*-1/2, *-y*+1/2, *z*+1/2; (xii) *x*, *y*, *z*-1; (xiii) *x*+1/2, *-y*+1/2, *z*-1/2; (xiv) *x*, *-y*+1, *z*-1/2.

Hydrogen-bond geometry (Å, °)

D—H··· A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
N4—H4A…N8 ^x	0.92	1.93	2.843 (4)	170
N4—H4B…Cl1 ^{ix}	0.98	2.20	3.177 (3)	175
N4—H4C…Cl1 ^{viii}	0.86	2.24	3.093 (3)	169
N7—H7···Cl1	0.86	2.55	3.094 (3)	122

N7—H7···O3 ^{iv}	0.86	2.56	3.204 (4)	133
C2—H2…O1	0.93	2.55	2.926 (5)	105
C6—H6···O1 ^{vi}	0.93	2.53	3.389 (4)	154
Symmetry codes: (x) $x-1/2$, $y+1/2$, z ; (ix) $x-1$, -y+1, z-1/2; (viii) x	x-1, y, z; (iv) $x+1/2, -1$	-y+1/2, $z+1/2$; (vi) $x-1$	/2, - <i>y</i> +1/2, <i>z</i> -1/2.

sup-7

Fig. 2

